ar X iv : m at h / 06 11 64 6 v 1 [ m at h . R A ] 2 1 N ov 2 00 6 NATURALLY GRADED 2 - FILIFORM LEIBNIZ ALGEBRAS
نویسندگان
چکیده
The Leibniz algebras appear as a generalization of the Lie algebras [8]. The classification of naturally graded p-filiform Lie algebras is known [3], [4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0 (trivial) and p = 1 [1]. In this work we get the classification of naturally graded non Lie 2-filiform Leibniz algebras.
منابع مشابه
ar X iv : m at h / 06 11 38 6 v 1 [ m at h . R A ] 1 3 N ov 2 00 6 Quasi Q n - filiform Lie algebras ∗
In this paper we explicitly determine the derivation algebra, automorphism group of quasi Qn-filiform Lie algebras, and applying some properties of root vector decomposition we obtain their isomorphism theorem. AMS Classification: 17B05; 17B30
متن کاملar X iv : m at h / 06 11 83 1 v 1 [ m at h . R A ] 2 7 N ov 2 00 6 CLASSIFICATION OF 4 - DIMENSIONAL NILPOTENT COMPLEX
The Leibniz algebras appeared as a generalization of the Lie algebras. In this work we deal with the classification of nilpotent complex Leibniz algebras of low dimensions. Namely, the classification of nilpotent complex Leibniz algebras dimensions less than 3 is extended to the dimension four.
متن کاملar X iv : m at h / 06 11 77 4 v 1 [ m at h . FA ] 2 5 N ov 2 00 6 MODULE EXTENSIONS OF DUAL BANACH ALGEBRAS
In this paper we define the module extension dual Banach algebras and we use this Banach algebras to finding the relationship between weak−continuous homomorphisms of dual Banach algebras and Connes-amenability. So we study the weak∗−continuous derivations on module extension dual Banach algebras.
متن کاملar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC
We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.
متن کامل